• DocumentCode
    846210
  • Title

    Design of multiple-metal stacked inductors incorporating an extended physical model

  • Author

    Murphy, Olive H. ; McCarthy, Kevin G. ; Delabie, Christophe J P ; Murphy, Aidan C. ; Murphy, Patrick J.

  • Author_Institution
    Dept. of Electr. & Electron. Eng., Univ. Coll. Cork, Ireland
  • Volume
    53
  • Issue
    6
  • fYear
    2005
  • fDate
    6/1/2005 12:00:00 AM
  • Firstpage
    2063
  • Lastpage
    2072
  • Abstract
    Modern analog circuits are heavily dependent on inductor performance, where the poor inductor quality factor (Q) of silicon processes leads to degradation in circuit efficacy, especially at RF and microwave frequencies. Several techniques have been proposed to enhance the Q of integrated on-chip inductors, but the most effective method of Q improvement is to lower the series resistance by increasing the inductor metal thickness. This paper presents the most cost-effective method of achieving a thick metal by using a standard 0.18-μm multilayer BiCMOS process. An expanded physically based model for multiple-metal stacked inductors is presented, which expands on previous research to show the effects and limitations of stacking two, three, and four metal layers in a five-metal-layer process. The excellent accuracy of this geometrical model is illustrated with respect to a range of inductor designs showing that an improvement in Q of more than 50% may be achieved. Due to the increased parasitics in multilayer structures, the Q improvement is very frequency dependent, which is clearly predicted with the expanded model. The predictive capability of the model is further used to provide detailed insight into the effectiveness of a patterned ground shield for different substrate characteristics. This predictive ability will contribute greatly to first time right inductor designs and eliminate the expensive and time-consuming fabrication iterations required to fine tune other inductor models.
  • Keywords
    BiCMOS analogue integrated circuits; MMIC; Q-factor; inductors; integrated circuit modelling; multilayers; 0.18 micron; BiCMOS process; Q improvement; Q prediction; RF frequency; analog circuits; extended physical model; five-metal-layer process; geometrical model; inductor designs; inductor performance; inductor quality factor; integrated on-chip inductors; integrated stacked inductor model; microwave frequency; multilayer structures; multiple-metal stacked inductors; patterned ground shield; series resistance; silicon process; substrate characteristics; thick metal; Analog circuits; Degradation; Inductors; Microwave circuits; Microwave frequencies; Nonhomogeneous media; Predictive models; Q factor; Radio frequency; Silicon; Integrated stacked inductor model; patterned ground shield (PGS);
  • fLanguage
    English
  • Journal_Title
    Microwave Theory and Techniques, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9480
  • Type

    jour

  • DOI
    10.1109/TMTT.2005.848813
  • Filename
    1440724