DocumentCode :
847277
Title :
Robust asymptotic stabilizability of Petersen´s counterexample via a linear static controller
Author :
Stalford, Harold
Author_Institution :
Sch. of Aerosp. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
Volume :
40
Issue :
8
fYear :
1995
fDate :
8/1/1995 12:00:00 AM
Firstpage :
1488
Lastpage :
1491
Abstract :
A stabilizing linear static controller is discovered for a linear time-varying uncertain system of Petersen. We use the concept of a sandwich cone decomposition to show that Petersen´s system is stabilizable by linear static controllers. We establish the surprising result that Petersen´s system is stabilizable against time-varying uncertainties on any given compact subset of the uncertainty controllability space. Our work suggests the use of “scalar-quadratic” Lyapunov functions, a special subclass of polyhedral Lyapunov functions, in establishing stability for other linear time-varying uncertain systems, and it reopens the study of the conjecture: stabilizability via nonlinear control always implies stabilizability via linear control
Keywords :
Lyapunov methods; asymptotic stability; controllability; feedforward; linear systems; robust control; time-varying systems; uncertain systems; Petersen´s system; asymptotic stabilizability; linear time-varying systems; open loop systems; polyhedral Lyapunov functions; robust control; sandwich cone decomposition; uncertain system; uncertainty controllability space; Control systems; Covariance matrix; Filtering; Filters; Robust control; Smoothing methods; Stochastic processes; Time varying systems; Uncertain systems; Uncertainty;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.402249
Filename :
402249
Link To Document :
بازگشت