DocumentCode :
847329
Title :
Note on B-splines, wavelet scaling functions, and Gabor frames
Author :
Gröchenig, Karlheinz ; Janssen, Augustus J E M ; Kaiblinger, Norbert ; Pfander, Götz E.
Author_Institution :
Dept. of Math., Connecticut Univ., Storrs, CT, USA
Volume :
49
Issue :
12
fYear :
2003
Firstpage :
3318
Lastpage :
3320
Abstract :
Let g be a continuous, compactly supported function on such that the integer translates of g constitute a partition of unity. We show that the Gabor system (g,a,b), with window g and time-shift and frequency-shift parameters a,b>0 has no lower frame bound larger than 0 if b=2,3,... and a>0. In particular, (g,a,b) is not a Gabor frame if g is a continuous, compactly supported wavelet scaling function and if b=2,3,... and a>0. We give an example for our result for the case that g=B1, the triangle function supported by [-1,1], by showing pictures of the canonical dual corresponding to (g,a,b) where ab=1/4 and b crosses the lines N=2,3,.
Keywords :
approximation theory; function approximation; splines (mathematics); time-frequency analysis; wavelet transforms; B-spline; Gabor frame; Ron-Shen condition; triangle function; wavelet scaling function; Continuous wavelet transforms; Frequency; Laboratories; Mathematics; Spline;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2003.820022
Filename :
1255562
Link To Document :
بازگشت