DocumentCode :
847612
Title :
Asymptotic Improvement of the Gilbert–Varshamov Bound for Linear Codes
Author :
Gaborit, Philippe ; Zémor, Gilles
Author_Institution :
XLIM, Univ. de Limoges, Limoges
Volume :
54
Issue :
9
fYear :
2008
Firstpage :
3865
Lastpage :
3872
Abstract :
The Gilbert-Varshamov (GV) bound states that the maximum size A2(n, d) of a binary code of length n and minimum distance d satisfies A2(n, d)ges2n/V(n, d-1) where V(n, d)=Sigmai=0 d(i n) stands for the volume of a Hamming ball of radius d. Recently, Jiang and Vardy showed that for binary nonlinear codes this bound can be improved to A2(n, d)gescn2n/(V(n, d-1)) for c a constant and d/nges0.499. In this paper, we show that certain asymptotic families of linear binary [n, n/2] random double circulant codes satisfy the same improved GV bound.
Keywords :
binary codes; linear codes; Gilbert-Varshamov bound; asymptotic improvement; binary nonlinear codes; hamming ball; linear codes; Binary codes; Graph theory; H infinity control; Hamming distance; Helium; Information theory; Linear code; Welding; Double circulant code; Gilbert–Varshamov (GV) bound; linear code; random coding;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2008.928288
Filename :
4608966
Link To Document :
بازگشت