DocumentCode :
847640
Title :
New MDS or Near-MDS Self-Dual Codes
Author :
Gulliver, T. Aaron ; Kim, Jon-Lark ; Lee, Yoonjin
Author_Institution :
Dept. of of Electr. & Comput. Eng., Univ. of Victoria, Victoria, BC
Volume :
54
Issue :
9
fYear :
2008
Firstpage :
4354
Lastpage :
4360
Abstract :
We construct new MDS or near-MDS self-dual codes over large finite fields. In particular, we show that there exists a Euclidean self-dual MDS code of length n = q over GF(q) whenever q = 2m (m ges 2) using a Reed-Solomon (RS) code and its extension. It turns out that this multiple description source (MDS) self-dual code is an extended duadic code. We construct Euclidean self-dual near-MDS codes of length n = q-1 over GF(q) from RS codes when q = 1 (mod 4) and q les 113. We also construct many new MDS self-dual codes over GF(p) of length 16 for primes 29 les p les 113. Finally, we construct Euclidean/Hermitian self-dual MDS codes of lengths up to 14 over GF(q2) where q = 19, 23,25, 27, 29.
Keywords :
Reed-Solomon codes; dual codes; Euclidean MDS code; Reed-Solomon code; extended duadic code; multiple description source code; self-dual codes; Codes; Galois fields; Mathematics; Multiple description source (MDS) codes; Reed–Solomon (RS) codes; self-dual codes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2008.928297
Filename :
4608969
Link To Document :
بازگشت