DocumentCode :
848865
Title :
Stability of polynomials under coefficient perturbation
Author :
Bialas, S. ; Garloff, J.
Author_Institution :
Academy of Mining and Metallurgy, Crakow, Poland
Volume :
30
Issue :
3
fYear :
1985
fDate :
3/1/1985 12:00:00 AM
Firstpage :
310
Lastpage :
312
Abstract :
Let the real polynomial a_{0}x^{n} + a_{1}x^{n-1} + ... + a_{n-1}x + a_{n} be stable and let the real numbers b_{k}, c_{k} \\geq 0, 0 \\leq k \\leq n , be given. We present a simple determinant criterion for finding the largest t_{0} \\geq 0 such that the polynomial \\alpha _{0}x^{n} + \\alpha _{1}x^{n-1}+ ... +\\alpha _{n-1}x + \\alpha _{n} is stable for all \\alpha _{k} \\in (a_{k} - b_{k}t_{0}, a_{k} + C_{k}t_{0}) cup {a_{k}}, 0 \\leq k \\leq n . Several further observations allow us to reduce the computational cost considerably.
Keywords :
Perturbation methods; Polynomials; Stability; Convergence; Distributed parameter systems; Liquids; Optimal control; Partial differential equations; Polynomials; Stability; State estimation; Stochastic systems; Upper bound;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1985.1103930
Filename :
1103930
Link To Document :
بازگشت