DocumentCode :
848930
Title :
A faster method of computing matrix pythagorean sums
Author :
Incertis, F.
Author_Institution :
IBM España, Madrid, Spain
Volume :
30
Issue :
3
fYear :
1985
fDate :
3/1/1985 12:00:00 AM
Firstpage :
273
Lastpage :
275
Abstract :
In a recent paper [1], Moler and Morrison have described an iterative algorithm for the computation of the Pythagorean sum a \\oplus b {\\underline {\\underline \\Delta } } (a^{2} + b^{2})^{1/2} of two real numbers a and b without computing their squares or taking a square root. The subroutine is robust, short, portable, has a cubic rate of convergence, and is immune to floating-point overflows. In this note the method is extended to the efficient computation of the Pythagorean sum A \\oplus B of two real commuting matrices.
Keywords :
Matrices; Approximation algorithms; Control systems; Convergence; Covariance matrix; Equations; Filtering theory; Iterative algorithms; Optimal control; Robustness; Scientific computing;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1985.1103937
Filename :
1103937
Link To Document :
بازگشت