DocumentCode :
850657
Title :
Parameter estimator based on a minimum discrepancy criterion: a Bayesian approach
Author :
Chang, Chen-Yu ; Chang, Shyang
Author_Institution :
Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsin Chu, Taiwan
Volume :
37
Issue :
6
fYear :
1991
fDate :
11/1/1991 12:00:00 AM
Firstpage :
1671
Lastpage :
1675
Abstract :
A new estimation criterion based on the discrepancy between the estimator´s error covariance and its information lower bound is proposed. This discrepancy measure criterion tries to take the information content of the observed data into account. A minimum discrepancy estimator (MDE) is then obtained under a linearity assumption. This estimator is shown to be equivalent to the maximum likelihood estimator (MLE), if one assumes that a linear efficient estimator exists and the prior distribution of parameters is uniform. Moreover, it is equivalent to the minimum variance unbiased estimator (MVUE) if the MDE is required to be unbiased. Illustrative examples of MDE and its comparisons with other estimators are given
Keywords :
Bayes methods; information theory; parameter estimation; Bayesian approach; covariance; information content; lower bound; minimum discrepancy criterion; parameter estimation; Bayesian methods; Covariance matrix; Data mining; Estimation theory; Linearity; Maximum likelihood estimation; Mean square error methods; Model driven engineering; Parameter estimation; Signal to noise ratio;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.104332
Filename :
104332
Link To Document :
بازگشت