DocumentCode
852775
Title
A dynamic programming approach to trajectory planning of robotic manipulators
Author
Shin, Kang G. ; McKay, Neil D.
Author_Institution
University of Michigan, Ann Arbor, MI, USA
Volume
31
Issue
6
fYear
1986
fDate
6/1/1986 12:00:00 AM
Firstpage
491
Lastpage
500
Abstract
This paper presents a solution to the problem of minimizing the cost of moving a robotic manipulator along a specified geometric path subject to input torque/force constraints, taking the coupled, nonlinear dynamics of the manipulator into account. The proposed method uses dynamic programming (DP) to find the positions, velocities, accelerations, and torques that minimize cost. Since the use of parametric functions reduces the dimension of the state space from
for an
- jointed manipulator, to two, the DP method does not suffer from the "curse of dimensionality." While maintaining the elegance of our previous trajectory planning method, we have developed the DP method for the general case where 1) the actuator torque limits are dependent on one another, 2) the cost functions can have an arbitrary form, and 3) there are constraints on the jerk, or derivative of the acceleration. Also, we have shown that the DP solution converges as the grid size decreases. As numerical examples, the trajectory planning method is simulated for the first three joints of the PACS arm, which is a cylindrical arm manufactured by the Bendix Corporation.
for an
- jointed manipulator, to two, the DP method does not suffer from the "curse of dimensionality." While maintaining the elegance of our previous trajectory planning method, we have developed the DP method for the general case where 1) the actuator torque limits are dependent on one another, 2) the cost functions can have an arbitrary form, and 3) there are constraints on the jerk, or derivative of the acceleration. Also, we have shown that the DP solution converges as the grid size decreases. As numerical examples, the trajectory planning method is simulated for the first three joints of the PACS arm, which is a cylindrical arm manufactured by the Bendix Corporation.Keywords
Dynamic programming; Manipulator motion-planning; Optimal control, nonlinear systems; Acceleration; Actuators; Costs; Couplings; Dynamic programming; Manipulator dynamics; Robots; State-space methods; Torque; Trajectory;
fLanguage
English
Journal_Title
Automatic Control, IEEE Transactions on
Publisher
ieee
ISSN
0018-9286
Type
jour
DOI
10.1109/TAC.1986.1104317
Filename
1104317
Link To Document