DocumentCode :
852847
Title :
Bounds on the accuracy of Gaussian ARMA parameter estimation methods based on sample covariances
Author :
Porat, Boaz ; Friedlander, Benjamin
Author_Institution :
Technion--Israel Institute of Technology, Haifa, Israel
Volume :
31
Issue :
6
fYear :
1986
fDate :
6/1/1986 12:00:00 AM
Firstpage :
579
Lastpage :
582
Abstract :
The asymptotic accuracy of Gaussian ARMA parameter estimation methods based on a fixed number of sample covariances is considered. Several key results are briefly reviewed, including: i) a general asymptotic expression for the error covariance of the ARMA parameter estimates; ii) the fact that this error covariance is always greater than a certain lower bound; iii) the fact that this lower bound is strictly greater than the Cramer-Rao bound; iv) an explicit ARMA estimation technique that asymptotically achieves the bound. The key result of this note is a proof that this lower bound approaches the Cramer-Rao bound as the number of sample covariances tends to infinity.
Keywords :
Autoregressive moving-average processes; Covariance functions; Automatic control; Computational complexity; Cramer-Rao bounds; Equations; H infinity control; Maximum likelihood estimation; Parameter estimation; Statistics; System identification; Yield estimation;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1986.1104325
Filename :
1104325
Link To Document :
بازگشت