• DocumentCode
    852855
  • Title

    Area fill synthesis for uniform layout density

  • Author

    Chen, Yu ; Kahng, Andrew B. ; Robins, Gabriel ; Zelikovsky, Alexander

  • Author_Institution
    Dept. of Comput. Sci., California Univ., Los Angeles, CA, USA
  • Volume
    21
  • Issue
    10
  • fYear
    2002
  • fDate
    10/1/2002 12:00:00 AM
  • Firstpage
    1132
  • Lastpage
    1147
  • Abstract
    Chemical-mechanical polishing (CMP) and other manufacturing steps in very deep submicron very large scale integration have varying effects on device and interconnect features, depending on local characteristics of the layout. To improve manufacturability and performance predictability, the authors seek to make a layout uniform with respect to prescribed density criteria, by inserting "area fill" geometries into the layout. In this paper, they make the following contributions. First, the authors define the flat, hierarchical, and multiple-layer filling problems, along with a unified density model description. Secondly, for the flat filling problem, they summarize current linear programming approaches with two different objectives, i.e., the Min-Var and Min-Fill objectives. They then propose several new Monte Carlo-based filling methods with fast dynamic data structures. Thirdly, they give practical iterated methods for layout density control for CMP uniformity based on linear programming, Monte Carlo, and greedy algorithms. Fourthly, to address the large data volume and inherent lack of scalability of flat layout density control, the authors propose practical methods for hierarchical layout density control. These methods smoothly trade off runtime, solution quality, and output data volume. Finally, they extend the linear programming approaches and present new Monte Carlo-based methods for the multiple-layer filling problem. Comparisons with previous filling methods show the advantages of the new iterated Monte Carlo and iterated greedy methods for both flat and hierarchical layouts and for both density models (spatial density and effective density). The authors achieve near-optimal filling for flat layouts with respect to each of these objectives. Their experiments indicate that the hybrid hierarchical filling approach is efficient, scalable, accurate, and highly competitive with existing methods (e.g., linear programming-based techniques) for hierarchical layouts.
  • Keywords
    Monte Carlo methods; VLSI; algorithm theory; chemical mechanical polishing; circuit layout CAD; linear programming; semiconductor process modelling; Min-Fill objectives; Min-Var objectives; Monte Carlo methods; area fill synthesis; chemical-mechanical polishing; fast dynamic data structures; flat filling problem; greedy algorithms; hierarchical layout; iterated methods; layout planarization; linear programming; manufacturability; multiple-layer filling problems; near-optimal filling; output data volume; performance predictability; solution quality; submicron very large scale integration; unified density model; uniform layout density; Chemicals; Data structures; Filling; Geometry; Greedy algorithms; Linear programming; Manufacturing; Monte Carlo methods; Scalability; Very large scale integration;
  • fLanguage
    English
  • Journal_Title
    Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0278-0070
  • Type

    jour

  • DOI
    10.1109/TCAD.2002.802278
  • Filename
    1043890