Title :
Numerical and experimental investigation of an ultrawideband ridged pyramidal horn antenna with curved launching plane for pulse radiation
Author :
Li, Xu ; Hagness, Susan C. ; Choi, Min K. ; Van der Weide, Daniel W.
Author_Institution :
Dept. of Electr. & Comput. Eng., Wisconsin Univ., Madison, WI, USA
fDate :
6/25/1905 12:00:00 AM
Abstract :
We report the numerical analysis and experimental characterization of an ultrawideband (UWB) antenna designed for radiating short microwave pulses. The antenna consists of a pyramidal horn, a ridge, and a curved launching plane terminated with resistors. The pyramidal horn is connected to the outer conductor of the coaxial feed and serves as the ground plane. The curved launching plane is connected to the central conductor of the coaxial feed. Detailed three-dimensional finite-difference time-domain (FDTD) simulations have been conducted to assist with the characterization of the antenna. FDTD results are compared with experimental data and are shown to be in good agreement. We demonstrate that the antenna exhibits a very low voltage standing wave ratio (/spl les/1.5) over a wide frequency range from 1 to 11 GHz and a very high fidelity (/spl ges/0.92). The spatial distribution of radiated energy is characterized both in the time domain, using transient field observations at various angles, as well as in the frequency domain, using single-frequency far-field radiation patterns. We conclude that this antenna offers high-fidelity transmission and reception of ultrashort microwave pulses with minimal distortion.
Keywords :
UHF antennas; antenna feeds; antenna radiation patterns; broadband antennas; finite difference time-domain analysis; horn antennas; 1 to 11 GHz; 3D FDTD analysis; UWB antenna; VSWR; coaxial feed; curved launching plane; far-field radiation patterns; pulse radiation; ridged pyramidal horn antenna; three-dimensional finite-difference time-domain analysis; ultrashort microwave pulses; ultrawideband antenna; voltage standing wave ratio; Coaxial components; Conductors; Feeds; Finite difference methods; Horn antennas; Microwave antennas; Numerical analysis; Time domain analysis; Ultra wideband antennas; Ultra wideband technology;
Journal_Title :
Antennas and Wireless Propagation Letters, IEEE
DOI :
10.1109/LAWP.2003.820708