• DocumentCode
    854899
  • Title

    Parameter estimation in Bayesian high-resolution image reconstruction with multisensors

  • Author

    Molina, Rafael ; Vega, Miguel ; Abad, Javier ; Katsaggelos, Aggelos K.

  • Author_Institution
    Dept. de Ciencias de la Computacion e I.A., Univ. de Granada, Spain
  • Volume
    12
  • Issue
    12
  • fYear
    2003
  • Firstpage
    1655
  • Lastpage
    1667
  • Abstract
    We consider the estimation of the unknown parameters for the problem of reconstructing a high-resolution image from multiple undersampled, shifted, degraded frames with subpixel displacement errors. We derive mathematical expressions for the iterative calculation of the maximum likelihood estimate of the unknown parameters given the low resolution observed images. These iterative procedures require the manipulation of block-semi circulant (BSC) matrices, that is, block matrices with circulant blocks. We show how these BSC matrices can be easily manipulated in order to calculate the unknown parameters. Finally the proposed method is tested on real and synthetic images.
  • Keywords
    Bayes methods; image reconstruction; image resolution; iterative methods; matrix algebra; maximum likelihood estimation; sensor fusion; Bayesian high-resolution image reconstruction; Bayesian methods; block matrices; block-semi circulant matrices; circulant blocks; iterative calculation; maximum likelihood estimation; multiple frames; multisensors; parameter estimation; subpixel displacement errors; Bayesian methods; Charge-coupled image sensors; Degradation; Image reconstruction; Image resolution; Optical imaging; Parameter estimation; Pixel; Signal resolution; Signal to noise ratio;
  • fLanguage
    English
  • Journal_Title
    Image Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1057-7149
  • Type

    jour

  • DOI
    10.1109/TIP.2003.818117
  • Filename
    1257401