DocumentCode :
855364
Title :
On possibilities of the extension of Kharitonov´s stability test for interval polynomials to the discrete-time case
Author :
Cieslik, Joanna
Author_Institution :
Instytut Automatyki Politechnica Warszawska, Warszawska, Poland
Volume :
32
Issue :
3
fYear :
1987
fDate :
3/1/1987 12:00:00 AM
Firstpage :
237
Lastpage :
238
Abstract :
It is shown that the Kharitonov test for Hurwitz stability of an interval polynomial does not extend in general to the discrete-time case, unless the degree n of the polynomial is not greater than two. For n \\leq 3 a given monic interval polynomial has all roots inside the unit disk if all 2^{3} = 8 extreme polynomials have that property (instead of only four polynomials in Kharitonov\´s test). For n = 4 it is shown by a counterexample that discrete-time stability of all extreme polynomials does not guarantee the stability of the interval polynomial.
Keywords :
Discrete-time systems; Polynomials; Routh methods, linear systems; Polynomials; Stability; Testing;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1987.1104585
Filename :
1104585
Link To Document :
بازگشت