• DocumentCode
    855552
  • Title

    On the parameters estimation of continuous-time ARMA processes from noisy observations

  • Author

    Dembo, A. ; Zeitouni, O.

  • Author_Institution
    Technion-Israel Institute of Technology, Haifa, Israel
  • Volume
    32
  • Issue
    4
  • fYear
    1987
  • fDate
    4/1/1987 12:00:00 AM
  • Firstpage
    361
  • Lastpage
    364
  • Abstract
    Recently, an iterative algorithm has been presented for estimating the parameters of partially observed continuous-time processes [1]. In this note we concentrate on continuous-time ARMA processes observed in white noise. A maximum a-posteriori (MAP) estimator is defined for the trajectory of the parameters´ random process. This approach enables the MAP estimation of randomly slowly varying parameters, and extends the conventional treatment of time-invariant parameters. The iterative algorithm derived for the MAP estimation, increases the posterior probability of the parameters in each iteration, and converges to a stationary point of the posterior probability functional. Each iteration involves a standard linear smoother followed by a finite-dimensional linear system, and thus is easily implemented.
  • Keywords
    Autoregressive moving-average processes; MAP estimation; Additive noise; Filters; Iterative algorithms; Linear systems; Noise measurement; Parameter estimation; Pollution measurement; Random processes; State estimation; Trajectory;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.1987.1104604
  • Filename
    1104604