DocumentCode
863044
Title
Integration of step-edge grain boundary Josephson junctions with YBCO multilayers for electronics applications
Author
Daly, K.P. ; Murduck, J.M. ; Pettiett-Hall, C.L. ; Sergant, M.
Author_Institution
Electron. Syst. & Technol. Div., TRW Inc., Redondo Beach, CA, USA
Volume
5
Issue
2
fYear
1995
fDate
6/1/1995 12:00:00 AM
Firstpage
3131
Lastpage
3134
Abstract
We discuss our multilayer YBCO process which uses step-edge junctions. Key issues are dielectric defect density, wiring layer critical current over edges of underlying features and junction critical current uniformity. We have demonstrated an average defect density of about 450/cm/sup 2/ over many wafers. Wiring critical current exceeds 1 mA//spl mu/m of line width. We have demonstrated SQUIDs at 77 K using this process.<>
Keywords
Josephson effect; SQUIDs; barium compounds; critical current density (superconductivity); grain boundaries; high-temperature superconductors; superconducting thin films; yttrium compounds; 77 K; HTS layers; HTSC; Josephson junctions; SQUIDs; YBCO multilayers; YBaCuO; dielectric defect density; electronics applications; junction critical current uniformity; multilayer YBCO process; step-edge grain boundary junctions; wiring layer critical current; Argon; Critical current; Dielectric substrates; High temperature superconductors; Josephson junctions; Nonhomogeneous media; Pulsed laser deposition; SQUIDs; Wiring; Yttrium barium copper oxide;
fLanguage
English
Journal_Title
Applied Superconductivity, IEEE Transactions on
Publisher
ieee
ISSN
1051-8223
Type
jour
DOI
10.1109/77.403255
Filename
403255
Link To Document