• DocumentCode
    864611
  • Title

    Computing a Lower Bound of the Smallest Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix

  • Author

    Laudadio, Teresa ; Mastronardi, Nicola Joon ; Van Barel, Marc

  • Author_Institution
    Ist. per le Applicazioni del Calcolo M. Picone, Bari
  • Volume
    54
  • Issue
    10
  • fYear
    2008
  • Firstpage
    4726
  • Lastpage
    4731
  • Abstract
    In this correspondence, several algorithms to compute a lower bound of the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix are described and compared in terms of accuracy and computational efficiency. Exploiting the Toeplitz structure of the considered matrix, new theoretical insights are derived and an efficient implementation of some of the aforementioned algorithms is provided.
  • Keywords
    eigenvalues and eigenfunctions; matrix decomposition; signal processing; Toeplitz structure; eigenvalue; factorization; symmetric positive-definite Toeplitz matrix; Computational efficiency; Computer networks; Control system synthesis; Councils; Eigenvalues and eigenfunctions; Iterative algorithms; Read-write memory; Signal processing algorithms; Sun; Symmetric matrices; Cholesky factorization; Levinson–Durbin algorithm; QR factorization; Toeplitz matrix; eigenvalues; symmetric positive-definite matrix;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2008.928966
  • Filename
    4626067