DocumentCode :
864611
Title :
Computing a Lower Bound of the Smallest Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix
Author :
Laudadio, Teresa ; Mastronardi, Nicola Joon ; Van Barel, Marc
Author_Institution :
Ist. per le Applicazioni del Calcolo M. Picone, Bari
Volume :
54
Issue :
10
fYear :
2008
Firstpage :
4726
Lastpage :
4731
Abstract :
In this correspondence, several algorithms to compute a lower bound of the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix are described and compared in terms of accuracy and computational efficiency. Exploiting the Toeplitz structure of the considered matrix, new theoretical insights are derived and an efficient implementation of some of the aforementioned algorithms is provided.
Keywords :
eigenvalues and eigenfunctions; matrix decomposition; signal processing; Toeplitz structure; eigenvalue; factorization; symmetric positive-definite Toeplitz matrix; Computational efficiency; Computer networks; Control system synthesis; Councils; Eigenvalues and eigenfunctions; Iterative algorithms; Read-write memory; Signal processing algorithms; Sun; Symmetric matrices; Cholesky factorization; Levinson–Durbin algorithm; QR factorization; Toeplitz matrix; eigenvalues; symmetric positive-definite matrix;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2008.928966
Filename :
4626067
Link To Document :
بازگشت