• DocumentCode
    867967
  • Title

    Neural-Network-Based Path Planning for a Multirobot System With Moving Obstacles

  • Author

    Li, Howard ; Yang, Simon X. ; Seto, Mae L.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of New Brunswick, Fredericton, NB
  • Volume
    39
  • Issue
    4
  • fYear
    2009
  • fDate
    7/1/2009 12:00:00 AM
  • Firstpage
    410
  • Lastpage
    419
  • Abstract
    Recently, a coordinated hybrid agent (CHA) framework was proposed for the control of multiagent systems (MASs). It was demonstrated that an intelligent planner can be designed for the CHA framework to automatically generate desired actions for multiple robots in an MAS. However, in previous studies, only static obstacles in the workspace were considered. In this paper, a neural-network-based approach is proposed for a multirobot system with moving obstacles. A biologically inspired neural-network-based intelligent planner is designed for the coordination of MASs. A landscape of the neural activities for all neurons of a CHA agent contains information about the agent´s local goal and moving obstacles. The proposed approach is able to plan the paths for multiple robots while avoiding moving obstacles. The proposed approach is simulated using both Matlab and Vortex. The Vortex module executes control commands from the control system module, and provides the outputs describing the vehicle state and terrain information, which are, in turn, used in the control module to produce the control commands. Simulation results show that the developed intelligent planner of the CHA framework can control a large complex system so that coordination among agents can be achieved.
  • Keywords
    collision avoidance; intelligent robots; mobile robots; multi-robot systems; neurocontrollers; coordinated hybrid agent framework; moving obstacle; multiagent system; multirobot system; neural network; path planning; Framework; hybrid systems; multiagent systems (MASs); neural networks; path planning;
  • fLanguage
    English
  • Journal_Title
    Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1094-6977
  • Type

    jour

  • DOI
    10.1109/TSMCC.2009.2020789
  • Filename
    4926151