DocumentCode :
86817
Title :
Robust Model Predictive Control of Nonlinear Systems With Unmodeled Dynamics and Bounded Uncertainties Based on Neural Networks
Author :
Zheng Yan ; Jun Wang
Author_Institution :
Dept. of Mech. & Autom. Eng., Chinese Univ. of Hong Kong, Hong Kong, China
Volume :
25
Issue :
3
fYear :
2014
fDate :
Mar-14
Firstpage :
457
Lastpage :
469
Abstract :
This paper presents a neural network approach to robust model predictive control (MPC) for constrained discrete-time nonlinear systems with unmodeled dynamics affected by bounded uncertainties. The exact nonlinear model of underlying process is not precisely known, but a partially known nominal model is available. This partially known nonlinear model is first decomposed to an affine term plus an unknown high-order term via Jacobian linearization. The linearization residue combined with unmodeled dynamics is then modeled using an extreme learning machine via supervised learning. The minimax methodology is exploited to deal with bounded uncertainties. The minimax optimization problem is reformulated as a convex minimization problem and is iteratively solved by a two-layer recurrent neural network. The proposed neurodynamic approach to nonlinear MPC improves the computational efficiency and sheds a light for real-time implementability of MPC technology. Simulation results are provided to substantiate the effectiveness and characteristics of the proposed approach.
Keywords :
Jacobian matrices; discrete time systems; learning (artificial intelligence); minimax techniques; neurocontrollers; nonlinear control systems; predictive control; recurrent neural nets; robust control; uncertain systems; Jacobian linearization; MPC; bounded uncertainty; constrained discrete-time system; convex minimization problem; extreme learning machine; minimax optimization problem; neurodynamic approach; nonlinear system; robust model predictive control; supervised learning; two-layer recurrent neural network; unmodeled dynamics; Artificial neural networks; Nonlinear systems; Optimization; Robustness; Uncertainty; Vectors; Extreme learning machine (ELM); real-time optimization; recurrent neural networks (RNNs); robust model predictive control (MPC); unmodeled dynamics;
fLanguage :
English
Journal_Title :
Neural Networks and Learning Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
2162-237X
Type :
jour
DOI :
10.1109/TNNLS.2013.2275948
Filename :
6582522
Link To Document :
بازگشت