DocumentCode :
86883
Title :
Multiparty Zero-Error Classical Channel Coding With Entanglement
Author :
Piovesan, Teresa ; Scarpa, Giuseppe ; Schaffner, Christian
Author_Institution :
Centre for Math. & Comput. Sci., Amsterdam, Netherlands
Volume :
61
Issue :
2
fYear :
2015
fDate :
Feb. 2015
Firstpage :
1113
Lastpage :
1123
Abstract :
We study the effects of quantum entanglement on the performance of two classical zero-error communication tasks among multiple parties. Both tasks are generalizations of the two-party zero-error channel-coding problem, where a sender and a receiver want to perfectly communicate messages through a one-way classical noisy channel. If the two parties are allowed to share entanglement, there are several positive results that show the existence of channels for which they can communicate strictly more than what they could do with classical resources. In the first task, one sender wants to communicate a common message to multiple receivers. We show that if the number of receivers is greater than a certain threshold then entanglement does not allow for an improvement in the communication for any finite number of uses of the channel. On the other hand, when the number of receivers is fixed, we exhibit a class of channels for which entanglement gives an advantage. The second problem we consider features multiple collaborating senders and one receiver. Classically, cooperation among the senders might allow them to communicate on average more messages than the sum of their individual possibilities. We show that whenever a channel allows single-sender entanglement-assisted advantage, then the gain extends also to the multisender case. Furthermore, we show that entanglement allows for a peculiar amplification of information which cannot happen classically, for a fixed number of uses of the channels.
Keywords :
channel capacity; channel coding; quantum entanglement; multiparty zero-error classical channel coding; peculiar amplification; quantum entanglement; single-sender entanglement-assisted advantage; two-party zero-error channel-coding problem; zero-error communication tasks; Compounds; Hilbert space; Noise measurement; Probability distribution; Protocols; Quantum entanglement; Receivers; Channel capacity; graph theory; quantum entanglement; quantum mechanics;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2014.2379273
Filename :
6981943
Link To Document :
بازگشت