DocumentCode :
870342
Title :
Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance
Author :
Liu, Chengjun
Author_Institution :
Dept. of Comput. Sci., New Jersey Inst. of Technol., Newark, NJ, USA
Volume :
28
Issue :
5
fYear :
2006
fDate :
5/1/2006 12:00:00 AM
Firstpage :
725
Lastpage :
737
Abstract :
This paper presents a novel pattern recognition framework by capitalizing on dimensionality increasing techniques. In particular, the framework integrates Gabor image representation, a novel multiclass kernel Fisher analysis (KFA) method, and fractional power polynomial models for improving pattern recognition performance. Gabor image representation, which increases dimensionality by incorporating Gabor filters with different scales and orientations, is characterized by spatial frequency, spatial locality, and orientational selectivity for coping with image variabilities such as illumination variations. The KFA method first performs nonlinear mapping from the input space to a high-dimensional feature space, and then implements the multiclass Fisher discriminant analysis in the feature space. The significance of the nonlinear mapping is that it increases the discriminating power of the KFA method, which is linear in the feature space but nonlinear in the input space. The novelty of the KFA method comes from the fact that 1) it extends the two-class kernel Fisher methods by addressing multiclass pattern classification problems and 2) it improves upon the traditional generalized discriminant analysis (GDA) method by deriving a unique solution (compared to the GDA solution, which is not unique). The fractional power polynomial models further improve performance of the proposed pattern recognition framework. Experiments on face recognition using both the FERET database and the FRGC (face recognition grand challenge) databases show the feasibility of the proposed framework. In particular, experimental results using the FERET database show that the KFA method performs better than the GDA method and the fractional power polynomial models help both the KFA method and the GDA method improve their face recognition performance. Experimental results using the FRGC databases show that the proposed pattern recognition framework improves face recognition performance upon the BEE ba- - seline algorithm and the LDA-based baseline algorithm by large margins.
Keywords :
Gabor filters; face recognition; image representation; pattern classification; polynomials; statistical analysis; Gabor filters; Gabor image representation; dimensionality increasing techniques; face recognition grand challenge performance; fractional power polynomial models; generalized discriminant analysis; multiclass kernel Fisher analysis; multiclass pattern classification problems; orientational selectivity; pattern recognition; spatial frequency; spatial locality; Databases; Face recognition; Gabor filters; Image analysis; Image representation; Kernel; Pattern analysis; Pattern recognition; Performance analysis; Polynomials; Dimensionality increasing techniques; Face Recognition Grand Challenge (FRGC); Gabor image representation; Kernel Fisher Analysis (KFA) method.; face recognition; fractional power polynomial models; Algorithms; Artificial Intelligence; Cluster Analysis; Face; Humans; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Pattern Recognition, Automated; Subtraction Technique;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2006.90
Filename :
1608036
Link To Document :
بازگشت