DocumentCode :
871111
Title :
Methods for chaotic signal estimation
Author :
Kay, Steven ; Nagesha, Venkatesh
Author_Institution :
Rhode Island Univ., Kingston, RI, USA
Volume :
43
Issue :
8
fYear :
1995
fDate :
8/1/1995 12:00:00 AM
Firstpage :
2013
Lastpage :
2016
Abstract :
A dynamic programming algorithm and a suboptimal but computationally efficient method for estimation of a chaotic signal in white Gaussian noise are proposed. The nonlinear map is assumed known so that only the initial condition need be estimated. Computer simulations confirm that both approaches produce efficient estimates at high signal-to-noise ratios
Keywords :
Gaussian noise; chaos; computational complexity; dynamic programming; interference (signal); maximum likelihood detection; maximum likelihood estimation; white noise; chaotic signal estimation; dynamic programming algorithm; high signal-to-noise ratios; initial condition; nonlinear map; suboptimal but computationally efficient method; white Gaussian noise; Chaos; Convergence; Electrons; Estimation; Gaussian noise; Heuristic algorithms; Radar; Signal processing algorithms; Smoothing methods; Taylor series;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.403367
Filename :
403367
Link To Document :
بازگشت