Title :
A multigrid solver for time harmonic three-dimensional electromagnetic wave problems
Author :
Weiss, B. ; Bíró, O. ; Caldera, P. ; Hollaus, K. ; Paoli, G. ; Preis, K.
Author_Institution :
IGTE, Technische Univ. Graz
fDate :
4/1/2006 12:00:00 AM
Abstract :
A geometric multigrid algorithm for time harmonic electromagnetic wave problems including lossy material is presented. A finite element method with edge elements and nodal elements is used to describe the problems. For the multigrid smoother, complex conjugate gradient method with Gauss-Seidel preconditioning is used
Keywords :
conjugate gradient methods; differential equations; electromagnetic wave transmission; finite element analysis; iterative methods; 3D electromagnetic wave problems; Gauss-Seidel preconditioning; complex conjugate gradient method; convergence of solutions; edge elements; finite element method; geometric multigrid algorithm; lossy material; multigrid smoother; multigrid solver; nodal elements; solution of algebraic systems of equations; time harmonic electromagnetic wave problems; Conducting materials; Convergence; Current density; Eddy currents; Electric potential; Electromagnetic scattering; Equations; Finite element methods; Gaussian processes; Gradient methods; Convergence of solutions; edge elements; microwaves; solution of algebraic systems of equations;
Journal_Title :
Magnetics, IEEE Transactions on
DOI :
10.1109/TMAG.2006.871916