• DocumentCode
    873019
  • Title

    Efficient Evolution of Accurate Classification Rules Using a Combination of Gene Expression Programming and Clonal Selection

  • Author

    Karakasis, Vasileios K. ; Stafylopatis, Andreas

  • Author_Institution
    Sch. of Electr. & Comput. Eng., Nat. Tech. Univ. of Athens, Athens
  • Volume
    12
  • Issue
    6
  • fYear
    2008
  • Firstpage
    662
  • Lastpage
    678
  • Abstract
    A hybrid evolutionary technique is proposed for data mining tasks, which combines a principle inspired by the immune system, namely the clonal selection principle, with a more common, though very efficient, evolutionary technique, gene expression programming (GEP). The clonal selection principle regulates the immune response in order to successfully recognize and confront any foreign antigen, and at the same time allows the amelioration of the immune response across successive appearances of the same antigen. On the other hand, gene expression programming is the descendant of genetic algorithms and genetic programming and eliminates their main disadvantages, such as the genotype-phenotype coincidence, though it preserves their advantageous features. In order to perform the data mining task, the proposed algorithm introduces the notion of a data class antigen, which is used to represent a class of data, the produced rules are evolved by our clonal selection algorithm (CSA), which extends the recently proposed CLONALG algorithm. In CSA, among other new features, a receptor editing step has been incorporated. Moreover, the rules themselves are represented as antibodies that are coded as GEP chromosomes in order to exploit the flexibility and the expressiveness of such encoding. The proposed hybrid technique is tested on a set of benchmark problems in comparison to GEP. In almost all problems considered, the results are very satisfactory and outperform conventional GEP both in terms of prediction accuracy and computational efficiency.
  • Keywords
    artificial immune systems; data mining; genetic algorithms; pattern classification; CLONALG algorithm; classification rules; clonal selection algorithm; clonal selection principle; data class antigen; data mining tasks; gene expression programming; genetic algorithms; genotype-phenotype coincidence; hybrid evolutionary technique; immune system; receptor editing step; Artificial immune systems; clonal selection principle; data mining; gene expression programming;
  • fLanguage
    English
  • Journal_Title
    Evolutionary Computation, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1089-778X
  • Type

    jour

  • DOI
    10.1109/TEVC.2008.920673
  • Filename
    4633339