• DocumentCode
    873338
  • Title

    Coupling finite element and integral equation solutions using decoupled boundary meshes [electromagnetic scattering]

  • Author

    Cwik, Tom

  • Author_Institution
    Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA
  • Volume
    40
  • Issue
    12
  • fYear
    1992
  • fDate
    12/1/1992 12:00:00 AM
  • Firstpage
    1496
  • Lastpage
    1504
  • Abstract
    A method is outlined for calculating scattered fields from inhomogeneous penetrable objects using a coupled finite element-integral equation solution. The finite element equation can efficiently model fields in penetrable and inhomogeneous regions, while the integral equation exactly models fields on the finite element mesh boundary and in the exterior region. By decoupling the interior finite element and exterior integral equation meshes, considerable flexibility is found in both the number of field expansion points as well as their density. Only the nonmetal portions of the object need be modeled using a finite element expansion; exterior perfect conducting surfaces are modeled using an integral equation with a single unknown field since E tan is identically zero on these surfaces. Numerical convergence, accuracy, and stability at interior resonant frequencies are studied in detail
  • Keywords
    convergence of numerical methods; electromagnetic wave scattering; finite element analysis; integral equations; coupled finite element-integral equation solution; decoupled boundary meshes; electromagnetic scattering; field expansion points; inhomogeneous penetrable objects; interior resonant frequencies; numerical accuracy; numerical convergence; numerical stability; perfect conducting surfaces; scattered fields; Boundary conditions; Differential equations; Electromagnetic coupling; Finite element methods; Integral equations; Maxwell equations; Propulsion; Scattering; Solid modeling; Space technology;
  • fLanguage
    English
  • Journal_Title
    Antennas and Propagation, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-926X
  • Type

    jour

  • DOI
    10.1109/8.204740
  • Filename
    204740