• DocumentCode
    87576
  • Title

    Unsupervised classification based on non-negative eigenvalue decomposition and Wishart classifier

  • Author

    Chunle Wang ; Weidong Yu ; Wang, Ruiqi ; Yunkai Deng ; Fengjun Zhao ; Youchun Lu

  • Author_Institution
    Inst. of Electron., Beijing, China
  • Volume
    8
  • Issue
    8
  • fYear
    2014
  • fDate
    Oct-14
  • Firstpage
    957
  • Lastpage
    964
  • Abstract
    In this study, the authors propose an unsupervised terrain and land-use classification algorithm for polarimetric synthetic aperture radar (SAR) image analysis. Under the non-reflection symmetry condition, the non-negative eigenvalue decomposition (NNED) employing Arii volume scattering model is derived. They first apply NNED to divide pixels into three categories of surface, volume and double bounce scatterings. Then the pixels in each category are further divided into several classes based on the scattering characteristic parameter of the dominant scattering component. Utilising the initial classification result as training sets, the complex Wishart classifier can then be performed within each category or beyond categories to refine the final classification result. The effectiveness of this algorithm is demonstrated using the German Aerospace Center´s E-SAR polarimetric data acquired over the Oberpfaffenhofen area in Germany.
  • Keywords
    eigenvalues and eigenfunctions; geophysical image processing; image classification; land use; radar polarimetry; remote sensing by radar; surface scattering; synthetic aperture radar; terrain mapping; Arii volume scattering model; German Aerospace Center E-SAR polarimetric data; Germany; NNED; Oberpfaffenhofen area; Wishart classifier; dominant scattering component; double bounce scatterings; land-use classification algorithm; nonnegative eigenvalue decomposition; nonreflection symmetry condition; polarimetric synthetic aperture radar image analysis; scattering characteristic parameter; surface scattering model; unsupervised terrain classification; volume scattering model;
  • fLanguage
    English
  • Journal_Title
    Radar, Sonar & Navigation, IET
  • Publisher
    iet
  • ISSN
    1751-8784
  • Type

    jour

  • DOI
    10.1049/iet-rsn.2014.0076
  • Filename
    6911074