Title :
LDPC-coded MIMO systems with unknown block fading channels: soft MIMO detector design, channel estimation, and code optimization
Author :
Zheng, Jun ; Rao, Bhaskar D.
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of California, La Jolla, CA, USA
fDate :
4/1/2006 12:00:00 AM
Abstract :
This paper considers the design of a practical low-density parity check (LDPC)-coded multiple-input multiple-output (MIMO) system composed of M transmit and N receive antennas operating in a flat-fading environment where channel state information (CSI) is assumed to be unavailable both to the transmitter and the receiver. A soft iterative receiver structure is developed, which consists of three main blocks: a soft MIMO detector and two LDPC component soft decoders. We first propose at the component level several soft-input soft-output MIMO detectors whose performances are much better than the conventional minimal mean square error (MMSE)-based detectors. In particular, one optimal soft MIMO detector and two simplified suboptimal detectors are developed that do not require an explicit channel estimate and offer an effective tradeoff between complexity and performance. In addition, a modified expectation maximization (EM)-based MIMO detector is developed that completely removes positive feedback between input and output extrinsic information and provides much better performance compared with the direct EM-based detector that has strong correlations especially in fast-fading channels. At the structural level, the LDPC-coded MIMO receiver is constructed in an unconventional manner where the soft MIMO detector and LDPC variable node decoder form one super soft-decoding unit, and the LDPC check node decoder forms the other component of the iterative decoding scheme. By exploiting the proposed receiver structure, tractable extrinsic information transfer functions of the component soft decoders are obtained, which further lead to a simple and efficient LDPC code degree profile optimization algorithm with proven global optimality and guaranteed convergence from any initialization. Finally, numerical and simulation results are provided to confirm the advantages of the proposed design approach for the coded MIMO system.
Keywords :
MIMO systems; block codes; channel coding; channel estimation; expectation-maximisation algorithm; fading channels; iterative decoding; least mean squares methods; parity check codes; LDPC-coded MIMO systems; block fading channels; channel estimation; channel state information; code optimization; expectation maximization method; iterative decoding scheme; low-density parity check codes; minimal mean square error methods; multiple-input multiple-output system; profile optimization algorithm; receive antennas; soft MIMO detector design; soft iterative receiver structure; soft-input soft-output; transmit antennas; Channel estimation; Channel state information; Design optimization; Detectors; Fading; Iterative decoding; MIMO; Parity check codes; Receiving antennas; Transmitters; Degree profile optimization; EM estimator; LDPC-coded multple-input multiple-output (MIMO) system; extrinsic information transfer (EXIT)-chart; iterative receiver structure; joint channel estimation and data detection; soft-input soft-output MIMO detector;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2006.870565