Title :
Neural network for quadratic optimization with bound constraints
Author :
Bouzerdoum, Abdesselam ; Pattison, Tim R.
Author_Institution :
Dept. of Electr. & Electron. Eng., Adelaide Univ., SA, Australia
fDate :
3/1/1993 12:00:00 AM
Abstract :
A recurrent neural network is presented which performs quadratic optimization subject to bound constraints on each of the optimization variables. The network is shown to be globally convergent, and conditions on the quadratic problem and the network parameters are established under which exponential asymptotic stability is achieved. Through suitable choice of the network parameters, the system of differential equations governing the network activations is preconditioned in order to reduce its sensitivity to noise and to roundoff errors. The optimization method employed by the neural network is shown to fall into the general class of gradient methods for constrained nonlinear optimization and, in contrast with penalty function methods, is guaranteed to yield only feasible solutions
Keywords :
convergence of numerical methods; differential equations; mathematics computing; optimisation; recurrent neural nets; bound constraints; constrained nonlinear optimization; differential equations; exponential asymptotic stability; global convergence; gradient methods; quadratic optimization; recurrent neural network; Asymptotic stability; Constraint optimization; Convergence; Differential equations; Gradient methods; Helium; Neural networks; Noise reduction; Optimization methods; Recurrent neural networks;
Journal_Title :
Neural Networks, IEEE Transactions on