DocumentCode :
880727
Title :
An experimental multiplier circuit based on superconducting Josephson devices
Author :
Herrell, Dennis J.
Volume :
10
Issue :
5
fYear :
1975
Firstpage :
360
Lastpage :
368
Abstract :
This paper describes the design, testing, and operation of a 4-bit multiplier circuit based on Josephson tunneling logic (JTL) gates. The algorithm adopted was that of a simple serial 4-bit multiplier consisting of a 4-bit adder with ripple carry, together with a four phase, 8-bit accumulator shift register. The circuit, fabricated using a 25-/spl mu/m minimum linewidth technology, operated with a minimum cycle time of 6.67 ns (a limit imposed by the external test equipment) giving a 4-bit multiplication time of 27 ns with an average power dissipation of 35 /spl mu/W per logic gate. With better external pulse generators, or internal Josephson junction generators, the present circuit has been simulated to operate with a 3.0-ns cycle giving a 4-bit multiplication time of 12 ns.
Keywords :
Josephson junctions; Logic circuits; Multiplying circuits; Tunnelling; logic circuits; multiplying circuits; tunnelling; Circuit testing; Josephson junctions; Logic circuits; Logic devices; Logic gates; Logic testing; Pulse generation; Superconducting devices; Superconducting logic circuits; Tunneling;
fLanguage :
English
Journal_Title :
Solid-State Circuits, IEEE Journal of
Publisher :
ieee
ISSN :
0018-9200
Type :
jour
DOI :
10.1109/JSSC.1975.1050624
Filename :
1050624
Link To Document :
بازگشت