DocumentCode :
883169
Title :
Device scaling physics and channel velocities in AIGaN/GaN HFETs: velocities and effective gate length
Author :
Wu, Yuh-Renn ; Singh, Madhusudan ; Singh, Jasprit
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA
Volume :
53
Issue :
4
fYear :
2006
fDate :
4/1/2006 12:00:00 AM
Firstpage :
588
Lastpage :
593
Abstract :
This paper addresses scaling issues in AIGaN/GaN heterojunction field-effect transistors (HFETs) using ensemble Monte Carlo techniques. For gate lengths below 0.25 μm, fT values are known not to scale linearly with the inverse gate length. The authors´ simulations show this to be due to an increasing difference between the lithographic gate length and the effective gate length as the devices shrink. The results for AIGaN/GaN are compared with In0.52Al0.48-In0.53Ga0.47As-InP devices, and the authors found that the limiting role of velocity overshoot and depletion region spread causes the GaN HFETs to have a peak fT of ∼ 220 GHz compared to ∼ 500 GHz for InGaAs devices.
Keywords :
III-V semiconductors; Monte Carlo methods; aluminium compounds; gallium arsenide; gallium compounds; high electron mobility transistors; indium compounds; wide band gap semiconductors; AlGaN-GaN; In0.52Al0.48-In0.53Ga0.47As-InP; InGaAs; InGaAs devices; Monte Carlo technique; channel velocities; depletion region spread; device scaling physics; effective gate length; heterojunction field-effect transistors; lithographic gate length; velocity overshoot; FETs; Gallium nitride; HEMTs; Heterojunctions; Indium gallium arsenide; MODFETs; Monte Carlo methods; Optical scattering; Physics; Two dimensional displays; AlGaN; GaN; III-V nitrides; InGaAs; InP; effective gate length; heterojunction field-effect transistors (HFETs); recessed gate; scaling;
fLanguage :
English
Journal_Title :
Electron Devices, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9383
Type :
jour
DOI :
10.1109/TED.2006.870571
Filename :
1610883
Link To Document :
بازگشت