DocumentCode :
883924
Title :
Identification of Time-Varying Systems in Reproducing Kernel Hilbert Spaces
Author :
Pillonetto, Gianluigi
Author_Institution :
Dept. of Inf. Eng., Univ. degli Studi di Padova, Padova
Volume :
53
Issue :
9
fYear :
2008
Firstpage :
2202
Lastpage :
2209
Abstract :
We consider a class of linear systems in state-space form whose parameters evolve in time according to a continuous-time Gauss-Markov process. Our problem is to identify the system from a finite set of noisy output measurements. We derive a connection between this problem and Tikhonov regularization in reproducing kernel Hilbert spaces. Relying upon this result, conditions that ensure the existence of the maximum a posteriori estimate of the parameter trajectory are provided and an identification algorithm is worked out. Simulated data are used to test the goodness of the proposed approach.
Keywords :
Gaussian processes; Hilbert spaces; Markov processes; continuous time systems; linear systems; maximum likelihood estimation; state-space methods; time-varying systems; Tikhonov regularization; continuous-time Gauss-Markov process; kernel Hilbert space reproduction; linear system; maximum a posteriori estimation; noisy output measurement; parameter trajectory; state-space method; time-varying system identification; Automata; Automatic control; Automatic testing; Communication system control; Control systems; Hilbert space; Iterative algorithms; Kernel; Polynomials; Time varying systems; Bayes estimation; Gaussian processes; Tikhonov regularization; nonparametric identification; time-varying parameters;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2008.929876
Filename :
4639461
Link To Document :
بازگشت