• DocumentCode
    88526
  • Title

    An Augmented Two-Layer Model Captures Nonlinear Analog Spatial Integration Effects in Pyramidal Neuron Dendrites

  • Author

    Jadi, Monika P. ; Behabadi, Bardia F. ; Poleg-Polsky, Alon ; Schiller, Jackie ; Mel, Bartlett W.

  • Author_Institution
    Comput. Neurobiol. Lab., Salk Inst. for Biol. Studies, La Jolla, CA, USA
  • Volume
    102
  • Issue
    5
  • fYear
    2014
  • fDate
    May-14
  • Firstpage
    782
  • Lastpage
    798
  • Abstract
    In pursuit of the goal to understand and eventually reproduce the diverse functions of the brain, a key challenge lies in reverse engineering the peculiar biology-based “technology” that underlies the brain´s remarkable ability to process and store information. The basic building block of the nervous system is the nerve cell, or “neuron,” yet after more than 100 years of neurophysiological study and 60 years of modeling, the information processing functions of individual neurons, and the parameters that allow them to engage in so many different types of computation (sensory, motor, mnemonic, executive, etc.) remain poorly understood. In this paper, we review both historical and recent findings that have led to our current understanding of the analog spatial processing capabilities of dendrites, the major input structures of neurons, with a focus on the principal cell type of the neocortex and hippocampus, the pyramidal neuron (PN). We encapsulate our current understanding of PN dendritic integration in an abstract layered model whose spatially sensitive branch-subunits compute multidimensional sigmoidal functions. Unlike the 1-D sigmoids found in conventional neural network models, multidimensional sigmoids allow the cell to implement a rich spectrum of nonlinear modulation effects directly within their dendritic trees.
  • Keywords
    brain models; cellular biophysics; neurophysiology; abstract layered model; analog spatial processing capabilities; augmented two layer model; biology based technology; hippocampus; information processing functions; multidimensional sigmoidal functions; neocortex; nerve cell; neuron input structures; nonlinear analog spatial integration effects; nonlinear modulation effects; principal cell type; pyramidal neuron dendrites; pyramidal neuron dendritic integration; Biological system modeling; Brain modeling; Computational modeling; Context awareness; Mathematical model; Neurons; Neuroscience; Predictive models; Contextual modulation; dendrites; dendritic spike; multilayer network; multiplicative interaction; single-neuron model; synaptic integration;
  • fLanguage
    English
  • Journal_Title
    Proceedings of the IEEE
  • Publisher
    ieee
  • ISSN
    0018-9219
  • Type

    jour

  • DOI
    10.1109/JPROC.2014.2312671
  • Filename
    6803852