DocumentCode :
890268
Title :
Quaternary Convolutional Codes From Linear Block Codes Over Galois Rings
Author :
Sole, Patrick ; Sison, V.
Volume :
53
Issue :
6
fYear :
2007
fDate :
6/1/2007 12:00:00 AM
Firstpage :
2267
Lastpage :
2270
Abstract :
From a linear block code B over the Galois ring GR(4, m) with a k times n generator matrix and minimum Hamming distance d, a rate-k/n convolutional code over the ring Z4 with squared Euclidean free distance at least 2d and a nonrecursive encoder with memory at most m - 1 is constructed. When the generator matrix of B is systematic, the convolutional encoder is systematic, basic, noncatastrophic and minimal. Long codes constructed in this manner are shown to satisfy a Gilbert-Varshnmov bound.
Keywords :
Galois fields; Hamming codes; block codes; convolutional codes; linear codes; Galois rings; Gilbert-Varshnmov hound; Hamming distance; linear block codes; nonrecursive encoder; quaternary convolutional codes; squared Euclidean free distance; Block codes; Convolutional codes; Decoding; Hamming distance; Image sequence analysis; Linear code; MPEG 4 Standard; Phase modulation; Polynomials; Upper bound; Convolutional codes over rings; Galois rings; homogeneous weight; squared Euclidean free distance;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2007.896884
Filename :
4215149
Link To Document :
بازگشت