Title :
A Comparison of Linear Sequential Circuits and Arithmetic Sequences
Author :
Mandelbaum, David
Author_Institution :
Communications Systems, Inc., Paramus, N. J.
fDate :
4/1/1967 12:00:00 AM
Abstract :
This paper compares the properties of infinitely recurring sequences and terminating sequences generated by arithmetic division with the properties of linear feedback shift registers. The concept of state is defined as equivalent to the remainder or residue in a division process. It is shown that such state graphs have forms identical with those of classes of feedback shift registers. Divisors generating classes of cycles and trees are determined. Sums of such graphs are analyzed. Applications of such arithmetic sequences may be those where feedback shift registers are used. If computers are available, no extra hardware is needed.
Keywords :
Communication systems; Counting circuits; Digital arithmetic; Joining processes; Logic; Sequential circuits; Shift registers; Signal generators; State feedback; Tree graphs; Arithmetic cycles; arithmetic sequences; arithmetic trees; linear sequential circuits; maximal length sequences; recurring arithmetic sequences; shift register sequences;
Journal_Title :
Electronic Computers, IEEE Transactions on
DOI :
10.1109/PGEC.1967.264810