• DocumentCode
    894945
  • Title

    The Gaussian isoperimetric inequality and decoding error probabilities for the Gaussian channel

  • Author

    Tillich, Jean-Pierre ; Zémor, Gilles

  • Author_Institution
    INRIA, France
  • Volume
    50
  • Issue
    2
  • fYear
    2004
  • Firstpage
    328
  • Lastpage
    331
  • Abstract
    The Gaussian isoperimetric inequality states that among all sets in Rn with prescribed Gaussian measure, the half-spaces have minimal Gaussian perimeter. We apply this result to Voronoi regions of codes in Euclidean space and obtain a surprisingly precise description of how the maximum-likelihood decoding error probability varies as a function of the minimum Euclidean distance.
  • Keywords
    Gaussian channels; error statistics; maximum likelihood decoding; set theory; Euclidean space; Gaussian channel; Gaussian isoperimetric inequality; Voronoi regions; codes; decoding error probabilities; maximum-likelihood decoding; minimal Gaussian perimeter half-spaces; minimum Euclidean distance; sets; AWGN channels; Additive white noise; Error probability; Euclidean distance; Extraterrestrial measurements; Gaussian channels; Gaussian noise; Maximum likelihood decoding; Noise measurement; Upper bound;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2003.822604
  • Filename
    1266806