• DocumentCode
    897085
  • Title

    Cyclic minimizers, majorization techniques, and the expectation-maximization algorithm: a refresher

  • Author

    Stoica, Petre ; Selén, Yngve

  • Author_Institution
    Dept. of Information Technol., Uppsala Univ., Sweden
  • Volume
    21
  • Issue
    1
  • fYear
    2004
  • fDate
    1/1/2004 12:00:00 AM
  • Firstpage
    112
  • Lastpage
    114
  • Abstract
    Many parameter estimation problems in signal processing can be reduced to the task of minimizing a function of the unknown parameters. This task is difficult owing to the existence of possibly local minima and the sharpness of the global minimum. In this article we review three approaches that can be used to minimize functions of the type encountered in parameter estimation problems. The first two approaches, the cyclic minimization and the majorization technique, are quite general, whereas the third one, the expectation-maximization (EM) algorithm, is tied to the use of the maximum likelihood (ML) method for parameter estimation. The article provides a quick refresher of the aforementioned approaches for a wide readership.
  • Keywords
    maximum likelihood estimation; parameter estimation; signal processing; EM algorithm; cyclic minimizers; expectation-maximization algorithm; majorization techniques; maximum likelihood method; parameter estimation; signal processing; Convergence; Expectation-maximization algorithms; Minimization methods; Partitioning algorithms; Signal processing algorithms;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Magazine, IEEE
  • Publisher
    ieee
  • ISSN
    1053-5888
  • Type

    jour

  • DOI
    10.1109/MSP.2004.1267055
  • Filename
    1267055