DocumentCode :
897560
Title :
Development of the Self-Aligned Titanium Silicide Process for VLSI Applications
Author :
Alperin, Michael E. ; Hollaway, Thomas C. ; Haken, Roger A. ; Gosmeyer, Clayton D. ; Karnaugh, Robert V. ; Parmantie, Walter D.
Volume :
20
Issue :
1
fYear :
1985
Firstpage :
61
Lastpage :
69
Abstract :
A manufacturable self-aligned titanium silicide process which simultaneously silicides both polysilicon gates and junctions has been developed for VLSI applications. The process produces silicided gates and junctions with sheet resistances of 1.0-2.0 Omega/square. This paper describes the application of the self-aligned titanium silicide process to NMOS VLSI circuits of the 64K SRAM class with 1-/spl mu/m gate lengths. Comparison of circuit yield data and test structure parameters from devices fabricated with and without the silicidation process has demonstrated that the self-aligned silicide process is compatible with both VLSI NMOS and CMOS technologies. The self-aligned titanium silicide process has some very significant manufacturing advantages over the more conventional deposited silicide on polysilicon technologies. In particular, the problems associated with etching and depositing a polycide gate stack are eliminated with the self-aligned process since the polycide etch is replaced with a much more straightforward polysilicon only etch. As gate lengths, gate oxide thicknesses, and source-drain junction depths are scaled, Iinewidth control, etch selectivity to the underlying gate oxide, and cross-sectional profile control become more critical. The stringent etch requirements are more easily satisfied with the self-aligned silicide process.
Keywords :
Field effect integrated circuits; Integrated circuit technology; Semiconductor technology; Silicon compounds; Titanium compounds; VLSI; CMOS technology; Circuit testing; Etching; MOS devices; Manufacturing processes; Random access memory; Silicides; Thickness control; Titanium; Very large scale integration;
fLanguage :
English
Journal_Title :
Solid-State Circuits, IEEE Journal of
Publisher :
ieee
ISSN :
0018-9200
Type :
jour
DOI :
10.1109/JSSC.1985.1052277
Filename :
1052277
Link To Document :
بازگشت