DocumentCode :
902136
Title :
Optimization of electrostatic separation Processes using response surface modeling
Author :
Dascalescu, Lucian ; Tilmatine, Amar ; Aman, Florian ; Mihailescu, Michaela
Author_Institution :
Univ. Inst. of Technol., Angouleme, France
Volume :
40
Issue :
1
fYear :
2004
Firstpage :
53
Lastpage :
59
Abstract :
The efficiency of electrostatic separation processes depends on a multitude of factors, including the characteristics of the granular mixtures to be sorted, the feed rate, the configuration of the electrode system, the applied high voltage, and the environmental conditions. The possibility of optimizing the operation of industrial electrostatic separators using rather simple computed-assisted experimental design techniques has already been demonstrated. The aim of the present work is to analyze the peculiarities of application of a more sophisticated group of response surface experimental design techniques that make use of quadratic functions for modeling the electrostatic separation process. One unique contribution to this work is to consider the economic value of the process in addition to the technical result. The 11 electrostatic separation tests, corresponding to a central composite design, were carried out on samples of chopped electric wire wastes. The CARPCO laboratory roll-type electrostatic separator employed for this study enabled a rigorous control of two factors: the applied high-voltage level and the speed of the rotating roll electrode. The objective was to maximize the benefits from the recycling of both constituents of the binary copper-polyvinyl chloride granular mixture. The optimum operating conditions computed with the quadratic model derived from the experimental results were in good agreement with the data of pilot-plant tests. Thus, the highest extraction of useful materials was obtained at high voltage and low speed, while the optimum conditions for greatest economic value were found to be high voltage and high speed. The response surface methodology can be easily applied to most of the industrial applications of electrostatic separation technologies.
Keywords :
CAD; angular velocity control; copper; design of experiments; electrostatic precipitators; granular materials; quadratic programming; response surface methodology; voltage control; waste management; wires (electric); CARPCO laboratory; Cu; PVC; binary copper-polyvinyl chloride granular mixture; central composite design; chopped electric wire wastes; computed-assisted experimental design techniques; electrostatic separation processes; optimisation; process economics; quadratic functions; recycling; response surface modeling; rigorous voltage control; roll-type electrostatic separator; rotary speed control; separation tests; useful material extraction; Design for experiments; Electrodes; Electrostatics; Environmental economics; Feeds; Particle separators; Response surface methodology; Separation processes; Testing; Voltage;
fLanguage :
English
Journal_Title :
Industry Applications, IEEE Transactions on
Publisher :
ieee
ISSN :
0093-9994
Type :
jour
DOI :
10.1109/TIA.2003.821812
Filename :
1268179
Link To Document :
بازگشت