DocumentCode :
908463
Title :
A microreactor for hydrogen production in micro fuel cell applications
Author :
Pattekar, Ashish V. ; Kothare, Mayuresh V.
Author_Institution :
Dept. of Chem. Eng., Lehigh Univ., Bethlehem, PA, USA
Volume :
13
Issue :
1
fYear :
2004
Firstpage :
7
Lastpage :
18
Abstract :
A silicon-chip based microreactor has been successfully fabricated and tested for carrying out the reaction of methanol reforming for microscale hydrogen production. The developed microreactor in combination with a micro fuel cell is proposed as an alternative to conventional portable sources of electricity such as batteries due to its ability to provide an uninterrupted supply of electricity as long as a supply of methanol and water can be provided. The microreformer-fuel cell combination has the advantage of not requiring the tedious recharging cycles needed by conventional rechargeable lithium-ion batteries. It also offers significantly higher energy storage densities, which translates into less frequent "recharging" through the refilling of methanol fuel. The microreactor consists of a network of catalyst-packed parallel microchannels of depths ranging from 200 to 400 μm with a catalyst particle filter near the outlet fabricated using photolithography and deep-reactive ion etching (DRIE) on a silicon substrate. Issues related to microchannel and filter capping, on-chip heating and temperature sensing, introduction and trapping of catalyst particles in the microchannels, flow distribution, microfluidic interfacing, and thermal insulation have been addressed. Experimental runs have demonstrated a methanol to hydrogen molar conversion of at least 85% to 90% at flow rates enough to supply hydrogen to an 8- to 10-W fuel cell.
Keywords :
catalysis; chemical reactors; hydrogen economy; microfluidics; micromachining; photolithography; proton exchange membrane fuel cells; sputter etching; 8 to 10 W; H; catalyst-packed parallel microchannels; catalytic steam reforming; deep-reactive ion etching; filter capping; hydrogen production microreactor; methanol to hydrogen molar conversion; micro fuel cells; microfluidics; microreformer; microscale hydrogen production; on-chip heating; photolithography; proton exchange membrane fuel cells; silicon-chip based microreactor; system-on-chip; temperature sensing; thermal insulation; Batteries; Energy storage; Fuel cells; Hydrogen; Methanol; Microchannel; Particle filters; Production; Testing; Water resources;
fLanguage :
English
Journal_Title :
Microelectromechanical Systems, Journal of
Publisher :
ieee
ISSN :
1057-7157
Type :
jour
DOI :
10.1109/JMEMS.2004.823224
Filename :
1269727
Link To Document :
بازگشت