• DocumentCode
    913874
  • Title

    Transient annealing of defects in irradiated silicon devices

  • Author

    Gregory, Bob L. ; Sander, Howard H.

  • Author_Institution
    Sandia Laboratories, Albuquerque, N. Mex.
  • Volume
    58
  • Issue
    9
  • fYear
    1970
  • Firstpage
    1328
  • Lastpage
    1341
  • Abstract
    The annealing of radiation-produced defects in semiconductor devices is discussed briefly for60Co gamma-ray and 1-MeV electron damage, and in detail for fast-neutron damage. The effects on the reordering processes of varying the material parameters and the irradiation conditions are considered. Transient annealing of neutron damage near room temperature has been investigated for a wide variety of devices, and the data are presented in generalized form to increase their usefulness to device and circuit designers. Based on the experimental results, physical models are suggested for the reordering processes which occur during the annealing of neutron damage. Electron density is shown to be the most important factor governing the rate of transient annealing. Annealing factors are estimated for very early times (1 µs) following neutron exposure. Suggestions are made to minimize the effects of transient annealing on devices.
  • Keywords
    Annealing; Atomic measurements; Charge carrier lifetime; Circuits; Conducting materials; Electrons; Neutrons; Semiconductor materials; Silicon devices; Temperature;
  • fLanguage
    English
  • Journal_Title
    Proceedings of the IEEE
  • Publisher
    ieee
  • ISSN
    0018-9219
  • Type

    jour

  • DOI
    10.1109/PROC.1970.7925
  • Filename
    1449855