DocumentCode :
917171
Title :
High-Power 1.3-μm Quantum-Dot Superluminescent Light-Emitting Diode Grown by Molecular Beam Epitaxy
Author :
Ray, S.K. ; Choi, T.L. ; Groom, K.M. ; Liu, H.Y. ; Hopkinson, M. ; Hogg, R.A.
Author_Institution :
Dept. of Electron. & Electr. Eng., Univ. of Sheffield
Volume :
19
Issue :
2
fYear :
2007
Firstpage :
109
Lastpage :
111
Abstract :
In this letter, we demonstrate the improved performance of 1.3-mum seven-layered InAs-GaAs quantum-dot superluminescent light-emitting diodes by the engineering of the epitaxial growth conditions alone, namely the thickness of the low-temperature GaAs spacer layer between quantum-dot layers. For laser devices, a significant reduction in threshold current density and increase in external efficiency is observed, while for superluminescent diode structures, a ~4 fold increase in CW power at a given drive current is obtained
Keywords :
III-V semiconductors; current density; gallium arsenide; indium compounds; molecular beam epitaxial growth; semiconductor growth; semiconductor quantum dots; superluminescent diodes; 1.3 mum; InAs-GaAs; InAs-GaAs quantum-dot; external efficiency; molecular beam epitaxy; superluminescent light-emitting diode; threshold current density; Gallium arsenide; Light emitting diodes; Molecular beam epitaxial growth; Optical fiber sensors; Optical saturation; Optical sensors; Quantum dots; Stimulated emission; Superluminescent diodes; Temperature; Dot-in-well (DWELL); quantum dots (QDs); superluminescent light-emitting diode (SLED);
fLanguage :
English
Journal_Title :
Photonics Technology Letters, IEEE
Publisher :
ieee
ISSN :
1041-1135
Type :
jour
DOI :
10.1109/LPT.2006.889099
Filename :
4049848
Link To Document :
بازگشت