DocumentCode :
917496
Title :
Gleason´s theorem on self-dual codes
Author :
Berlekamp, Elwyn R. ; MacWilliams, F. Jessie ; Sloane, Neil J A
Volume :
18
Issue :
3
fYear :
1972
fDate :
5/1/1972 12:00:00 AM
Firstpage :
409
Lastpage :
414
Abstract :
The weight enumerator of a code is the polynomial begin{equation} W(x,y)= sum_{r=0}^n A_r x^{n-r} y^r, end{equation} where n denotes the block length and A_r , denotes the number of codewords of weight r . Let C be a self-dual code over GF(q) in which every weight is divisible by c . Then Gleason\´s theorem states that 1) if q = 2 and c = 2, the weight enumerator of C is a sum of products of the polynomials x^2 + y^2 and x^2y^2 (x^2 - y^2 )^2 if q = 2 and c = 4, the weight enumerator is a sum of products of x^8 + 14x^4 y^4 + y^8 and x^4 y^4 (x^4 - y^4)^4 ; and 3) if q = 3 and c = 3, the weight enumerator is a sum of products of x^4 + 8xy^3 and y^3(x^3 - y^3)^3 . In this paper we give several proofs of Gleason\´s theorem.
Keywords :
Dual codes; Decoding; Error correction codes; Information theory; Notice of Violation; Polynomials;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1972.1054817
Filename :
1054817
Link To Document :
بازگشت