DocumentCode :
918310
Title :
Class of constructive asymptotically good algebraic codes
Author :
Justesen, Jørn
Volume :
18
Issue :
5
fYear :
1972
fDate :
9/1/1972 12:00:00 AM
Firstpage :
652
Lastpage :
656
Abstract :
For any rate R, 0 < R < 1 , a sequence of specific (n,k) binary codes with rate R_n > R and minimum distance d is constructed such that begin{equation} lim_{n rightarrow infty} inf frac{d}{n} geq (1 - r ^{-1} R)H^{-1} (1 - r)> 0 end{equation} (and hence the codes are asymptotically good), where r is the maximum of frac{1}{2} and the solution of begin{equation} R = frac{r^2}{1 + log_2 [1 - H^{-1}(1 - r)]}. end{equation} The codes are extensions of the Reed-Solomon codes over GF(2^m) With a simple algebraic description of the added digits. Alternatively, the codes are the concatenation of a Reed-Solomon outer code of length N = 2^m - 1 with N distinct inner codes, namely all the codes in Wozeneraft\´s ensemble of randomly shifted codes. A decoding procedure is given that corrects all errors guaranteed correctable by the asymptotic lower bound on d . This procedure can be carried out by a simple decoder which performs approximately n^2 \\log n computations.
Keywords :
Decoding; Error-correcting codes; Reed-Solomon codes; Binary codes; Entropy; Error correction; Helium; Iterative decoding; Linear code; Polynomials; Reed-Solomon codes; Welding;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1972.1054893
Filename :
1054893
Link To Document :
بازگشت