• DocumentCode
    920437
  • Title

    Sufficient statistics and reproducing densities in simultaneous sequential detection and estimation

  • Author

    Birdsall, Theodore G. ; Gobien, Jurgen O.

  • Volume
    19
  • Issue
    6
  • fYear
    1973
  • fDate
    11/1/1973 12:00:00 AM
  • Firstpage
    760
  • Lastpage
    768
  • Abstract
    The doubly-compound hypothesis detection problem with finite-dimensional parameter vectors is treated in a general context. It is shown that estimation and detection occur simultaneously, with the detector using the a posteriori densities generated by two separate estimators, one for each hypothesis. No assumptions are made on the estimation criterion and very loose assumptions on the detection cfiterion. If sufficient statistics and hence natural conjugate densities exist for the unknown parameters, the procedure is quite tractable. In this case, the optimal detector partitions in such a way that the primary processing can be done without knowledge of the a priori parameter distributions.
  • Keywords
    Bayes procedures; Parameter estimation; Sequential detection; Sequential estimation; Bayesian methods; Cost function; Detectors; Gaussian noise; Parameter estimation; Random variables; Signal detection; Signal processing; Statistical distributions; Statistics;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.1973.1055105
  • Filename
    1055105