• DocumentCode
    920458
  • Title

    A theorem on the entropy of certain binary sequences and applications--I

  • Author

    Wyner, Aaron D. ; Ziv, Jacob

  • Volume
    19
  • Issue
    6
  • fYear
    1973
  • fDate
    11/1/1973 12:00:00 AM
  • Firstpage
    769
  • Lastpage
    772
  • Abstract
    In this, the first part of a two-part paper, we establish a theorem concerning the entropy of a certain sequence of binary random variables. In the sequel we will apply this result to the solution of three problems in multi-user communication, two of which have been open for some time. Specifically we show the following. Let X and Y be binary random n -vectors, which are the input and output, respectively, of a binary symmetric channel with "crossover" probability p_0 . Let H{X} and H{ Y} be the entropies of X and Y , respectively. Then begin{equation} begin{split} frac{1}{n} H{X} geq h(alpha_0), qquad 0 leq alpha_0 &leq 1, Rightarrow \\ qquad qquad &qquad frac{1}{n}H{Y} geq h(alpha_0(1 - p_0) + (1 - alpha_0)p_0) end{split} end{equation} where h(\\lambda ) = -\\lambda \\log \\lambda - (1 - \\lambda ) \\log (l - \\lambda ), 0 \\leq \\lambda \\leq 1 .
  • Keywords
    Entropy functions; Random variables; Sequences; Binary sequences; Entropy; Jacobian matrices; Memoryless systems; Probability distribution; Random variables;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.1973.1055107
  • Filename
    1055107