DocumentCode :
921
Title :
Gradient-Based Reliability Maps for ACM-Based Segmentation of Hippocampus
Author :
Zarpalas, Dimitrios ; Gkontra, Polyxeni ; Daras, Petros ; Maglaveras, Nicos
Author_Institution :
Inf. Technol. Inst., Centre for Res. & Technol. Hellas, Thessaloniki, Greece
Volume :
61
Issue :
4
fYear :
2014
fDate :
Apr-14
Firstpage :
1015
Lastpage :
1026
Abstract :
Automatic segmentation of deep brain structures, such as the hippocampus (HC), in MR images has attracted considerable scientific attention due to the widespread use of MRI and to the principal role of some structures in various mental disorders. In this literature, there exists a substantial amount of work relying on deformable models incorporating prior knowledge about structures´ anatomy and shape information. However, shape priors capture global shape characteristics and thus fail to model boundaries of varying properties; HC boundaries present rich, poor, and missing gradient regions. On top of that, shape prior knowledge is blended with image information in the evolution process, through global weighting of the two terms, again neglecting the spatially varying boundary properties, causing segmentation faults. An innovative method is hereby presented that aims to achieve highly accurate HC segmentation in MR images, based on the modeling of boundary properties at each anatomical location and the inclusion of appropriate image information for each of those, within an active contour model framework. Hence, blending of image information and prior knowledge is based on a local weighting map, which mixes gradient information, regional and whole brain statistical information with a multi-atlas-based spatial distribution map of the structure´s labels. Experimental results on three different datasets demonstrate the efficacy and accuracy of the proposed method.
Keywords :
biomedical MRI; brain; image segmentation; medical disorders; medical image processing; statistical analysis; ACM-based segmentation; HC boundaries; HC segmentation; MR images; active contour model; deep brain structures; deformable models; global weighting scheme; gradient information; gradient-based reliability maps; hippocampus; image information; local weighting map; mental disorders; multiatlas-based spatial distribution map; prior knowledge; whole brain statistical information; Brain modeling; Equations; Image edge detection; Image segmentation; Mathematical model; Shape; Training; Active contour model (ACM); brain MRI; hippocampus (HC) segmentation; local weighting scheme; multi-atlas; prior knowledge;
fLanguage :
English
Journal_Title :
Biomedical Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9294
Type :
jour
DOI :
10.1109/TBME.2013.2293023
Filename :
6675765
Link To Document :
بازگشت