DocumentCode :
922762
Title :
Bayes estimation with asymmetrical cost functions (Corresp.)
Author :
Papantoni-Kazakos, P.
Volume :
21
Issue :
1
fYear :
1975
fDate :
1/1/1975 12:00:00 AM
Firstpage :
93
Lastpage :
95
Abstract :
It is known that under certain restrictions on the posterior density and assigned cost function, the Bayes estimate of a random parameter is the conditional mean. The restrictions on the cost function are that it must be a symmetric convex upward function of the difference between the parameter and the estimate. In this correspondence, asymmetrical cost functions of the following form are examined: begin{equation} C(a, hat{a})= begin{cases} f_1(a- hat{a}),& a geq hat{a} \\ f_2(hat{a}- a),& a < hat{a} end{cases} end{equation} where f_1(\\cdot), f_2(\\cdot) are both twice-differentiable convex upward positive functions on [0, \\infty ] that intersect the origin. It is shown that for posterior densities satisfying a certain symmetry condition, the biased Bayes estimate is a generalized median. Furthermore, for linear polynomial functions f_1(\\cdot), f_2(\\cdot) , the unbiased Bayes estimate is shown to be the conditional mean.
Keywords :
Bayes procedures; Parameter estimation; Additive noise; Cost function; Electrons; Estimation theory; Gaussian noise; Impedance matching; Matched filters; Parameter estimation; Polynomials; Sufficient conditions;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1975.1055326
Filename :
1055326
Link To Document :
بازگشت