DocumentCode :
922815
Title :
The estimation of the gradient of a density function, with applications in pattern recognition
Author :
Fukunaga, Keinosuke ; Hostetler, Larry D.
Volume :
21
Issue :
1
fYear :
1975
fDate :
1/1/1975 12:00:00 AM
Firstpage :
32
Lastpage :
40
Abstract :
Nonparametric density gradient estimation using a generalized kernel approach is investigated. Conditions on the kernel functions are derived to guarantee asymptotic unbiasedness, consistency, and uniform consistency of the estimates. The results are generalized to obtain a simple mcan-shift estimate that can be extended in a k -nearest-neighbor approach. Applications of gradient estimation to pattern recognition are presented using clustering and intrinsic dimensionality problems, with the ultimate goal of providing further understanding of these problems in terms of density gradients.
Keywords :
Nonparametric estimation; Pattern recognition; Probability functions; Clustering algorithms; Density functional theory; Filtering; Kernel; Laboratories; Pattern recognition; Probability density function;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1975.1055330
Filename :
1055330
Link To Document :
بازگشت