DocumentCode :
923548
Title :
Unsupervised learning of the Kalman filter
Author :
Hampton, R.L.T.
Author_Institution :
Naval Weapons Center, China Lake, USA
Volume :
9
Issue :
17
fYear :
1973
Firstpage :
383
Lastpage :
384
Abstract :
It is the purpose of the letter to provide a short description of a general recursive method for learning the optimal stationary Kalman filter Kopt, when the plant and measurement noise covariance kernels, denoted by Q and R, respectively, are unknown. Experimental verification that confirms the theoretical expectations is presented.
Keywords :
Kalman filters; filtering and prediction theory; Kalman filters; filtering and prediction theory;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19730284
Filename :
4236233
Link To Document :
بازگشت