DocumentCode :
924259
Title :
Sequential nonparametric density estimation
Author :
Davies, H.I. ; Wegman, Edward J.
Volume :
21
Issue :
6
fYear :
1975
fDate :
11/1/1975 12:00:00 AM
Firstpage :
619
Lastpage :
628
Abstract :
Using kernel estimates of the Parzen type, a naive sequential nonparametric density estimation procedure is developed. The asymptotic distribution structure of the stopping variable is examined. The stopping variable is shown to have finite moments of ail order and is shown to be dosed. The stopping variable N depends on some preassigned error \\varepsilon , and it is shown that N diverges strongly to \\infty as \\varepsilon converges to zero. Finally, with \\hat{f}_n(x) being a kernel-type estimator, it is shown that \\hat{f}_N(X) converges to f(x) , the true density at x , with probability one as \\varepsilon converges to zero.
Keywords :
Nonparametric estimation; Probability functions; Sequential estimation; Convergence; Helium; Kernel; Mathematics; Pattern analysis; Pattern recognition; Random variables; Reliability engineering; Reliability theory; Statistics;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1975.1055468
Filename :
1055468
Link To Document :
بازگشت